DengAI: Predicting Disease Spread.

Bharat Jain, Soorya K S, Usman Akhinyemi

Problem we are trying to solve!

According to the World Health Organization, dengue fever is one of the top ten global health threats - it's also the most rapidly spreading.

"Each year, up to 400 million people are infected by a dengue virus. Approximately 100 million people get sick from infection, and 40,000 die from severe denque." **Centers for Disease Control and Prediction**

So, there's an urgent demand for effective strategies to predict numbers of dengue cases and mitigate their impact on global health.

Potential applications of the solution?

Developing an accurate model to predict the number of dengue cases to

- Enables better healthcare planning and resource allocation
- Target mosquito control efforts
- Establish early warning systems
- Guide for future research and policy decisions
- Strengthen global health security efforts

Impacts of the solution?

- Mitigation of global public health threats, including dengue fever
- Improved public health outcomes through accurate forecasts, leading to proactive measures and resource allocation.
- Cost savings through the implementation of smarter, more efficient strategies for disease control.
- Advancements in disease preparedness, future vector-borne diseases

02

Literature Survey

"S. G. Kakarla et al., "Weather integrated multiple machine learning models for prediction of dengue prevalence in India," Int. J. Biometeorol., vol. 67, no. 2, pp. 285–297, 2023."

Key Points:

- Kerala's coastal location increases dengue risk due to factors like rain and humidity.
- Lag features (using past data) were used to predict future dengue cases accurately.
- Different models were combined for forecasting.
- Urban areas in Kerala had higher dengue cases, highlighting the need for targeted interventions.

"S. G. Kakarla et al., "Weather integrated multiple machine learning models for prediction of dengue prevalence in India," Int. J. Biometeorol., vol. 67, no. 2, pp. 285–297, 2023."

Features Used

Weather Variables Lagged Variables Dengue Cases

Models Used	RMSE	Coeffcient of determination (r^2)	Variance Explained
1) Vector Auto Regression (VAR) model	0.572	0.67	_
2) Support Vector Regression (SVR)	0.447	0.8	90%
3) Generalized Boosted Regression Model (GBM)	1.65	0.36	36%
4) Long Short-Term Memory (LSTM) model	0.345	0.86	86%

"Predicting Dengue Fever Outbreaks," Gregcondit.com. [Online]. Available: https://www.gregcondit.com/projects/dengue-fever. [Accessed: 11-May-2024].

1) Corrected date anomalies and examined weather patterns correlation with dengue cases

2) Selected key weather variables based on domain knowledge and exploratory analysis.

3) LSTM neural networks for predicting Dengue outbreaks but found limitations in model performance due to dataset size and complexities.

4) Utilized lagged features with Random Forest Regressor to incorporate time dependencies in predictions.

5) Walk Forward Validation: Implemented a validation strategy that progresses through time to validate models effectively without violating the time order of data

"Predicting Dengue Fever Outbreaks," Gregcondit.com. [Online]. Available: https:// www.gregcondit.com/projects/dengue-fever. [Accessed: 11-May-2024].

Models Used: LSTM RandomForestTree

Performance Metrics

• Mean Absolute Error (MAE): 24

Best predictions are using Random Forest Regressors with 3 weeks of lagged features

Dataset

03

Collection

Dengue surveillance data is provided by

- The U.S. Centers for Disease Control and prevention
- Department of Defense's Naval Medical Research Unit and the Armed Forces Health Surveillance Center, in collaboration with the Peruvian government and U.S. universities.

Environmental and climate data is provided by

• The National Oceanic and Atmospheric Administration (NOAA), an agency of the U.S. Department of Commerce.

San Juan and Iquitos

• San Juan capital of Puerto Rico, located at the northern coast of the island, on the Atlantic Ocean.

• Iquitos, capital of Peru's Maynas Province and Loreto Region is the largest metropolis in the Peruvian Amazon, as well as the ninth-most populous city in Peru.

Nature of the Dataset

Classes	Featu
time_group	year, weekofyear, week_start_date, weekofyear
vegetation_index_group	ndvi_ne, ndvi_nw, ndvi_se, ndvi_sw
precipitation_group	precipitation_amt_mm, reanalysis_precip_amt_k station_precip_mm
temperature_group	reanalysis_air_temp_k', 'reanalysis_avg_temp_k' min_air_temp_k', 'station_avg_temp_c', 'station_
humidity_group	reanalysis_dew_point_temp_k, reanalysis_relative reanalysis_specific_humidity_g_per_kg
	Total number of features: 23 Total train data points: 1456 Total test data points: 416

res

_fixed

kg_per_m2, reanalysis_sat_precip_amt_mm,

', 'reanalysis_max_air_temp_k', 'reanalysis_ max_temp_c', 'station_min_temp_c

ve_humidity_percent,

Visualization

••

weekofyear

Scatter plot of weekofyear vs total cases

Skewed Distribution of Dataset

Correlation amongst groups and with Target

San Juans

	Correla	ation Matrix	for Temp	erature			 1.00
1	0.94	0.94	0.88	0.7	0.83	0.18	1.00
1	0.94	0.94	0.88	0.7	0.83	0.17	0.75
0.94	1	0.83	0.85	0.76	0.77	0.19	0.50
0.94	0.83	1	0.84	0.63	0.83	0.19	0.25
0.88	0.85	0.84	1	0.87	0.9	0.19	0.00
0.7	0.76	0.63	0.87	1	0.67	0.19	-0.25
0.83	0.77	0.83	0.9	0.67	1	0.18	-0.50
0.17	0.19	0.19	0.19	0.19	0.18	1	-0.75
							-1.00
reanalysis_avg_temp_k	reanalysis_max_air_temp_k	reanalysis_min_air_temp_k	station_avg_temp_c	station_max_temp_c	station_min_temp_c	total_cases	

Correlation amongst groups and with Target

Iquitos

			Correla	ation Matrix	k for Temp	erature			_	1.00
emp_k	1	0.97	0.75	0.41	0.6	0.64	0.24	0.096		1.00
emp_k	0.97	1	0.78	0.4	0.57	0.62	0.21	0.079		0.75
emp_k	0.75	0.78	1	-0.046	0.37	0.59	-0.093	-0.056		0.50
emp_k	0.41	0.4	-0.046	1	0.41	0.21	0.59	0.21		0.25
emp_c	0.6	0.57	0.37	0.41	1	0.65	0.45	0.12		0.00
emp_c	0.64	0.62	0.59	0.21	0.65	1	0.12	0.077		-0.25
emp_c	0.24	0.21	-0.093	0.59	0.45	0.12	1	0.2		-0.50
cases	0.096	0.079	-0.056	0.21	0.12	0.077	0.2	1		-0.75
	reanalysis_air_temp_k	reanalysis_avg_temp_k	eanalysis_max_air_temp_k	reanalysis_min_air_temp_k	station_avg_temp_c	station_max_temp_c	station_min_temp_c	total_cases		— -1.00

Results on PCA on the Test

	MAE						
Models	(without PCA)	(with PCA)		Models	MAE (without PCA)	MAE (with PCA)	
Elastic_Net	26.3606	27.6322		LassoLars	26.7428	27.6298	
Bayesian_Regression	26.5649	27.5889		OrthogonalMat	27 0086	27.6514	
DummyRegressor	27.6827	27.6827		chingPursuit	27.0900	27.0314	
ExtraTressRegressor	26.0817	30.8077		Ridge	26.6875	27.6418	
HuberRegressor	27.7428	28.7933		RandomForest Regressor	26.6442	30.1755	
LassoRegressor	26.7428	27.6298					

04

Feature Preprocessing

For each city:

• Fixing Weeks:

• Identify years where the 53rd week exists. This is crucial because not all years have a 53rd week. • Identify years with the 53nd week as the first week and adjust week numbers by incrementing with I.

Year: 1993

	city	year	weekofyear_fixed	weekofyear	wee
139	sj	1993	1	53	
140	sj	1993	2	1	
1/1	sj	1993	3	2	
141					
141					
141	city	уеаг	weekofyear_fixed	weekofyear	wee
188	city sj	year 1993	weekofyear_fixed	weekofyear 49	wee
188 189	city sj	year 1993 1993	weekofyear_fixed 50 51	weekofyear 49 50	wee

ek_start_date

- 1993-01-01
- 1993-01-08
- 1993-01-15

ek_start_date

- 1993-12-10
- 1993-12-17
- 1993-12-24

For each city,

- Handling Missing Values:
 - Identify columns with missing values, especially for NDVI (Normalized Difference Vegetation Index).
 - Interpolate missing values using linear interpolation method
 - Apply the Climatological Mean of the Day (CMD) method for interpolating climate data
 - Vi is the ith day of year j. T is the number of available data for that year. (Narapusetty, et al. Optimal estimation of the climatological mean)

station dive town were	27	W	veek start date
station_diur_temp_rng_c	37	n	ndvi ne
station_avg_temp_c	37		dvi nu
<pre>station_precip_mm</pre>	16		
station max temp c	14	n	ldv1_se
station min temp c	8	n	IdV1_SW
reanalysis max air temp k	4	p	precipitation_amt_mm
reanalysis tdtr k	4	r	reanalysis_air_temp_k
roanalysis specific humidity a per ka	1	r	reanalysis_avg_temp_k
reanalysis_specific_numinity_g_per_kg	4	r	reanalysis dew point temp k
reanalysis_sat_precip_amt_mm	4	r	reanalysis max air temp k
reanalysis_relative_humidity_percent	4	r	reanalysis min air temp k
reanalysis_precip_amt_kg_per_m2	4		complysis_min_dir_temp_k
reanalysis min air temp k	4		eanalysis_precip_anit_kg_per_mz
reanalysis dew point temp k	4	r	reanalysis_relative_numidity_percent
reanalysis air temp k	4	r	reanalysis_sat_precip_amt_mm
procipitation ant mm		r	<pre>reanalysis_specific_humidity_g_per_kg</pre>
	4	r	reanalysis tdtr k
reanalysis_avg_temp_k	4	s	station avg temp c
ndvi_sw	3		station diur temp rng c
ndvi se	3	3	tation_didi_temp_ring_c
ndvi nw	3	S	station_max_temp_c
ndvi ne	2	S	station_min_temp_c
1047TUG	5	S	station precip mm

$$\mathrm{V}_{\mathrm{est}} = rac{\sum_{j=1}^T V_{ij}}{T}$$

• Data standardization Adding lagg features

Juliano SA, O'Meara GF, Morrill JR, Cutwa MM. Desiccation and thermal tolerance of eggs and the coexistence of competing mosquitoes. Oecologia. 2002;130(3):458–469. doi:10.1007/s004420100811

20

We've looked at past data and added new features by shifting our climatic information by about 3 weeks

Machine Learning

Model Selection: Shortlisting Relevant Models

- PyCaret Python Library was used to do a quick run through
- Ran the function for both cities seprately (similar models were there in top 10)
- Shortlisted the best 10 models for further analysis of performance

	Model	MAE	MSE	RMSE	R2		Model
et	Extra Trees Regressor	25.8376	2284.5159	46.9393	0.1495	en	Elastic Net
en	Elastic Net	27.9897	2603.2451	49.8333	0.0586	omp	Orthogonal Matching
br	Bayesian Ridge	28.3362	2591.1884	49.7721	0.0574	r	Pursuit
lasso	Lasso Regression	28.3876	2590.0591	49.8091	0.0536	br	Bayesian Ridge
	Lasso Least Angle					huber	Huber Regressor
llar	Regression	28.3847	2591.0750	49.8174	0.0533	lasso	Lasso Regression
ridge	Ridge Regression	28.9281	2606.5684	49.9518	0.0479	llar	Lasso Least Angle
	Orthogonal Matching	20 1002	2500 2407	10 0015	0.0450		Regression
omp	Pursuit	28.1983	2589.3407	49.8845	0.0456	dummy	Dummy Regressor
lr	Linear Regression	29.0921	2630.4215	50.1649	0.0407	ridge	Ridge Regression
huber	Huber Regressor	24.3296	2792.2081	51.4973	-0.0005	lr	Linear Regression
dummy	Dummy Regressor	29.2975	2809.7766	51.7658	-0.0142	et	Extra Trees Regressor

For Iquitos

For San Juan

MAE	MSE	RMSE	R2
6.7681	129.8842	10.5429	-0.0253
6.7408	129.2654	10.5301	-0.0305
6.7718	129.7549	10.5521	-0.0316
5.9912	138.8084	10.7858	-0.0326
6.7821	130.6565	10.5735	-0.0328
6.7821	130.6564	10.5735	-0.0328
7.0617	136.2876	10.8050	-0.0788
6.8976	132.1761	10.7505	-0.1074
6.8753	132.8426	10.7907	-0.1214
6.8037	126.9249	10.7180	-0.2536

- Shortlisted Models
- 1. HuberRegressor
- 2. LassoLars
- 3. ElasticNet
- 4. Lasso Regression
- 5. BayesianRidge
- 6. Ridge

7. Orthogonal Matching Pursuit

- 1. Linear Regression
- 2. ExtraTreesRegressor
- 3. RandomForestRegressor

San Juan

200 V

150

125

Mean Absolute Error (MAE): 21.22340425531915 Mean Squared Error (MSE): 1333.3829787234042 Root Mean Squared Error (RMSE): 36.51551695818374 R-squared (R2 Score): 0.4856616123131029

tasks.

Mean Absolute Error (MAE): 21.5

HuberRegressor: Combines the robustness of absolute error minimization with the efficiency of squared error minimization. This allows it to handle outliers in the data

Mean Absolute Error (MAE): 22.48936170212766 Mean Squared Error (MSE): 2502.7978723404253 Root Mean Squared Error (RMSE): 50.02797089969196 R-squared (R2 Score): 0.034572180006203435

ExtraTreesRegressor: Builds an ensemble of decision trees during training, but with additional randomness in the feature selection and node splitting process, leading to potentially faster training and improved generalization performance.

RandomForestRegressor: Builds multiple decision trees during training and outputs the average prediction of the individual trees for regression

Highly effective in handling high-dimensional datasets and can capture complex relationships between input features and the target variable

```
Mean Squared Error (MSE): 1490.3085106382978
Root Mean Squared Error (RMSE): 38.604514122551755
R-squared (R2 Score): 0.4251292473737436
```

Iquitios

Mean Absolute Error (MAE): 5.259615384615385 Mean Squared Error (MSE): 80.0673076923077 Root Mean Squared Error (RMSE): 8.948033733301841 R-squared (R2 Score): 0.041355285282725696

Combines the penalties of both Lasso and Ridgeregression, allowing it to handle multicollinearity and perform feature selection by encouraging sparsity in the coefficients

> Mean Absolute Error (MAE): 5.990384615384615 Mean Squared Error (MSE): 78.85576923076923 Root Mean Squared Error (RMSE): 8.880077095992423 R-squared (R2 Score): 0.05586101772590768

Adds a penalty term to the ordinary least squares method, encouraging sparse feature selection by shrinking the coefficients of less important features towards zero, effectively performing feature selection and regularization simultaneously

> Mean Absolute Error (MAE): 5.990384615384615 Mean Squared Error (MSE): 79.875 R-squared (R2 Score): 0.04365778249592911

Assumes a Gaussian prior distribution over the coefficients and computes the posterior distribution using the observed data, providing a principled approach to regularization and uncertainty estimation in regression tasks.

> Mean Absolute Error (MAE): 26.585106382978722 Mean Squared Error (MSE): 2255.095744680851 Root Mean Squared Error (RMSE): 47.487848389675975 R-squared (R2 Score): 0.13012065707542197

```
Root Mean Squared Error (RMSE): 8.937281465859739
```

Weighted Average of the Selected Models for the final Prediction San Juan Iquitios

Idex	MAE	MSE	RMSE	R2 Score	index	MAE ^	MSE	RMSE	R2
Y	∇	∇	∇	7	7	7	7	∇	
HuberRegressor	5.2596153846	80.0673076923	8.9480337333	0.0413552853	ExtraTreesRegressor	21.2234042553	1333.3829787234	36.5155169582	(
LassoLars	5.9903846154	79.875	8.9372814659	0.0436577825	RandomForestRegressor	21.5	1490.3085106383	38.6045141226	0
ElasticNet	5.9903846154	78.8557692308	8.880077096	0.0558610177	HuberRegressor	22.4893617021	2502.7978723404	50.0279708997	0.
Lasso	6	80.0192307692	8.9453468781	0.0419309096	Lasso	26.2925531915	2237.1968085106	47.2990148789	0.
BayesianRidge	6.125	80.375	8.9652105385	0.0376712897	LassoLars	26.2978723404	2237.2446808511	47.2995209368	0.
Ridge	6.3942307692	85.7019230769	9.2575333149	-0.0261078831	BayesianRidge	26.585106383	2255.0957446809	47.4878483897	0.
OrthogonalMatchingPursuit	6.4038461538	85.0769230769	9.2237152535	-0.0186247671	ElasticNet	26.6117021277	2313.7925531915	48.1018976049	0.
LinearRegression	6.5288461538	87.4519230769	9.3515732942	-0.0470606077	OrthogonalMatchingPursuit	27.2180851064	2310.3457446809	48.066056055	0.
ExtraTreesRegressor	6.7115384615	82.5384615385	9.0850680536	0.0117681961	Ridge	27.3670212766	2217.6436170213	47.0918635968	0.
RandomForestRegressor	6.7307692308	84.9615384615	9.2174583515	-0.0172432688	LinearRegression	27.5212765957	2224.414893617	47.1637031372	0.

final_predictions_iq = (

- 0.6 * prediction(iq_std_train.drop('total_cases',axis=1), Y_iq, iq_std_test, 'HuberRegressor') +
- 0.3 * prediction(iq_std_train.drop('total_cases',axis=1), Y_iq, iq_std_test, 'ElasticNet') +
- 0.05 * prediction(iq_std_train.drop('total_cases',axis=1), Y_iq, iq_std_test, 'LassoLars') +
- * prediction(iq_std_train.drop('total_cases',axis=1), Y_iq, iq_std_test, 'BayesianRidge')).astype(int)
 - 4 Models performed better than 3, based on test submission (MAE 25.5505 vs 25.3101)
 - HuberRegression: 60%
 LassoLars: 5%
 - ElasticNet: 30%

• BasyesianRidge: 5%

final_predictions_sj = (

- literature survey

 - Huber Regressor: 10%

0.6 * prediction(sj_std_train.drop('total_cases',axis=1), Y_sj, sj_std_test,'ExtraTreesRegressor') + 0.3 * prediction(sj_std_train.drop('total_cases',axis=1), Y_sj, sj_std_test,'RandomForestRegressor',sj_rf_params) 0.1 * prediction(sj_std_train.drop('total_cases',axis=1), Y_sj, sj_std_test, 'HuberRegressor')).astype(int)

• Top 3 models, shows a good trend in test split and backed by

• Extra Tree Regressor: 60%

• Random Forest Regressor: 3 0%

Ranking in DrivenData DengAI

Make new submission

Total Participants: 14,990 Total Teams: 5994 Our Rank: 1335 Top 20% of Teams

Deployability at Plaksha

- Implement this on the Plaksha Campus, as a preventive mechanism for predicting and preparing for vector-borne diseases like Dengue.
- It can also be used by Plaksha Health Department to better prepare and acquire any logistics in case of an outbreak in atleast 3 weeks in advance
- Given the current temperature range in Chandigarh (33 38 degrees Celsius), it's apparent that the climate differs significantly from coastal regions where our model was originally trained. In the dataset, we observed a strong correlation between temperatures ranging from 25 to 30 degrees Celsius and reported dengue cases. However, with the higher temperatures experienced in Chandigarh, this correlation may undergo changes

Challenges

- As the deployment scales up to cover larger geographic areas or multiple regions, integrating heterogeneous data sources from various sources becomes challenging. Standardizing data formats, ensuring interoperability between different systems, and addressing data quality issues across diverse datasets are some challenges
- Handling large volumes of data and complex computational tasks associated with model training, validation, and inference requires significant computational resources.
- Models trained on data from specific regions may not generalize well to new geographic areas or populations with different environmental conditions, demographics, and healthcare infrastructure.
- Limited resources, including financial, human, and infrastructural resources, may constrain the scalability of the dengue prediction solution, particularly in resource-constrained settings or lowincome regions.

References

[1] N. A. M. Salim et al., "Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques," Sci. Rep., vol. 11, no. 1, pp. 1–9, 2021.

[2] P. Méndez-Lázaro, F. Muller-Karger, D. Otis, M. McCarthy, and M. Peña-Orellana, "Assessing climate variability effects on dengue incidence in San Juan, Puerto Rico," Int. J. Environ. Res. Public Health, vol. 11, no. 9, pp. 9409-9428, 2014.

[3] "Historic data (2010-2023)," Cdc.gov, 09-Feb-2024. [Online]. Available: https://www.cdc.gov/dengue/statisticsmaps/historic-data.html. [Accessed: 16-Mar-2024].

[4] Indjst.org. [Online]. Available: https://indjst.org/articles/using-public-open-data-to-predict-dengue-epidemicassessment-of-weather-variability-population-density-and-land-use-as-predictor-variables-for-dengue-outbreakprediction-using-support-vector-machine. [Accessed: 16-Mar-2024]. [5] B. Narapusetty, T. DelSole, and M. K. Tippett, "Optimal estimation of the climatological mean," J. Clim., vol. 22,

no. 18, pp. 4845–4859, 2009.

[6] P. Guo et al., "Developing a dengue forecast model using machine learning: A case study in China," PLoS Negl. Trop. Dis., vol. 11, no. 10, p. e0005973, 2017.

[7] B. M. Althouse, Y. Y. Ng, and D. A. T. Cummings, "Prediction of dengue incidence using search query surveillance," PLoS Negl. Trop. Dis., vol. 5, no. 8, p. e1258, 2011.

[8] R. Tuladhar et al., "Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal," Parasit. Vectors, vol. 12, no. 1, 2019.

Thanks!

