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Problem we are trying to solve!

According to the World Health Organization, dengue fever is one ot
the top ten global health threats - it's also the most rapidly
spreading.

“Each year, up to 400 million people are infected by a dengue virus. Approximately
100 million people get sick from infection, and 40,000 die from severe dengue.”

Centers for Disease Control and Prediction

So, there's an urgent demand for effective strategies to predict

numbers of dengue cases and mitigate their impact on global
health.
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https://www.cdc.gov/dengue/areaswithrisk/index.html
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Potential applications of the solution?

Developing an accurate model to predict the number of dengue cases to
e Enables better healchcare planning and resource allocation
e Target mosquito control efforts
e Establish ecarly warning systems
e Guide for tuture research and policy decisions

e Strengthen global health security efforts




Impacts of the solution?

e Mitigation of global public health threats, including dengue fever

Improved public health outcomes through accurate torecasts,

j_eading to proactive measures and resource allocation.

e Cost savings through the implementation of smarter, more efficient

strategies for disease control.

e Advancements in disease preparedness, future vector-borne diseases
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Pap'erzl

“S. G. Kakarla et al., “Weather integrated multiple machine learning models for prediction of dengue
prevalence in India,” Int. J. Biometeorol., vol. 67, no. 2, pp. 285-297, 2023.”

Data Acqulslﬂun
E"'“;‘:::‘““'“" Climate Data K€y Points:
°

— Kerala's coastal location increases

dcnguc risk due to facrors like
1 Data Preprocessing 1
Dataset- ataset- 1 1
Tlﬂlhlﬂgtﬂ'ﬂttﬂ:n::lf;‘dﬂﬂ to Trllﬂﬂ;ult:l?;szgua to raim and humldlty.
Dec 2015 Dec 2015 .
e Lag features (using past data)

P — were used to predict future
"‘ ’ ’ " 1 dcnguc cases accurately.
VAR GBEM SVR LSTM . )
J e Different models were combined
i for forecasting.
oo — e Urban areas in Kerala had higher
Pty > odel Validation Forecasting . . .
Dec 2017 dengue cases, highlighting che
need for targeted interventions.
Performance Evaluation #i Generate Results
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Paper:l

“S. G. Kakarla et al., “Weather integrated multiple machine learning models for prediction of dengue
prevalence In India,” Int. J. Biometeorol., vol. 67, no. 2, pp. 285-297, 2023.”

Coeffcient of Variance
Models Used RMSE determination (r*2) Explained
Features Used 1) Vector Auto Rjglression (VAR) 0.572 0.67 i
Weather Variables mode
Lagged Variables ,
2) Support Vector Regression (SVR) 0.447 0.8 90%

Dengue Cases

3) Generalized Boosted Regression

1.65 0.36 36%
Model (GBM)

4) Long Short-Term Memory (LSTM)

0.345 0.86 86%
model
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Paper:2

“Predicting Dengue Fever Outbreaks,” Gregcondit.com. [Online]. Available:
https://www.gregcondit.com/projects/dengue-fever. [Accessed: 11-May-2024].

1) Corrected date anomalies and examined weather patterns correlation with dengue cases
2) Selected key weather variables based on domain knowledge and exploratory analysis.

3) LSTM neural networks for predicting Dengue outbreaks but found limitations in model
performance due to dataset size and complexities.

4) Utilized lagged features with Random Forest Regressor to incorporate time dependencies
In predictions.

5) Walk Forward Validation: Implemented a validation strategy that progresses through time to
validate models effectively without violating the time order of data




Paper:2

“Predicting Dengue Fever Outbreaks,” Gregcondit.com. [Onlinel]. Available: https://
www.gregcondit.com/projects/dengue-fever. [Accessed: 11-May-2024].

Models Used:
LSTM
RandomForestTree

Performance Metrics
e Mean Absolute Error (MAE) : 24

Best predictions are using Random Forest Regressors with 3 weeks of lagged features







Collection

Dengue surveillance data is provided by

e The U.S. Centers for Disease Control and prevention
* Department of Defense's Naval Medical Research Unit and the

Armed Forces Health Surveillance Center, in collaboration with

the Peruvian government and U.S. universities.

Environmental and climate data is provided by

e The National Oceanic and Atmospheric Administration
(NOAA), an agency of the U.S. Department of Commerce.
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San Juan

San Juan and Iquitos

e San Juan capital of Puerto Rico,
located at the northern coast of the
island, on the Atlantic Ocean.

BI‘itiShﬂ e [quitos, capital of Peru's Maynas

Vlrgln Province and Loreto Region is the
Islands largest metropolis in the Peruvian
Amazon, as well as the ninth-most

US Virgin populous city in Peru.
Islands

icaragua

Costa Rica
!  Panama
\ Medellin

Bogota
o

Cali » Colombia

Quito——~_
)

Ecuador |
Guav.aq uil _— v

Venezuela
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Nature of the Dataset

Classes Features

time_group year, weekofyear, week_start_date, weekofyear_fixed

vegetation_index_group | ndvi_ne, ndvi_nw, ndvi_se, ndvi_sw

precipitation_amt_mm, reanalysis_precip_amt_kg_per_mz2, reanalysis_sat_precip_amt_mm,

precipitation_group STl T

reanalysis_air_temp_k', reanalysis_avg_temp_k', reanalysis_max_air_temp_k', ‘reanalysis_

m Sy . . . .
L B ORI min_air_temp_k’, 'station_avg_temp_c’, 'station_max_temp_c’, 'station_min_temp_c

reanalysis_dew_point_temp_k, reanalysis_relative_humidity_percent,

humidity_group reanalysis_specific_humidity_g_per_kg

Total number of features: 23
Total train data points: 1456
\\ Total test data points: 416 /
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total_cases

Scatter plot of year vs total_cases
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Visualization

Scatter plot of weekofyear vs total_cases
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Scatter plot of ndvi_ne vs total_cases
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Scatter plot of reanalysis_avg_temp_k vs total_cases
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Skewed Distribution of Dataset

Histogram and KDE plot of ndvi_ne

B

Histogram and KDE plot of precipitation_amt_mm

Histogram and KDE plot of reanalysis_air_temp_k
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Histogram and KDE plot of reanalysis_relative_humidity_percent
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total cases

orrelation among
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Correlation Matrix for Vegetation Index
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Correlation amongst groups and with Target

Correlation Matrix for Vegetation Index
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Results on PCA on the Test

Models (witl:ilc[ﬁ ECA) (Wli\:lhpF‘)EA)
Elastic_Net 26.3606 | 2/.6322
Bayesian_Regression | 26.5649 27.5889
DummyRegressor 27.6827 27.6827
ExtraTressRegressor 26.0817 30.8077
HuberRegressor 27.7428 28.7933
LassoRegressor 26.7428 27.6298

Models MAE MAE

(without PCA) (with PCA)

Lassolars 20.7428 2/.6298

OrthogonalMat | - hogs | 276614

chingPursuit

Ridge 206.6875 27.6418

nandomFporest |- . o145 19301755
Regressor




04

Feature

ing
rocess
Prep




=

For each city:

e Fixing Weeks:

o Identify years where the 53rd week exists. This is crucial because not all years have a 53rd week.
o Identify years with the 53nd week as the first week and adjust week numbers by incrementing

with 1.

Year:

139
140

141

188
189
190

city
)
SJ

sJ

city
)
SJ

5)

1993

year
1993
1993

1993

year
1993
1993
1993

weekofyear_Fixed weekofyear

1
2

3

53
1

2

weekofyear_Fixed weekofyear

50
51
52

49
50
51

week_start_date
1993-01-01
1993-01-08

1993-01-15

week_start_date
1993-12-10
1993-12-17

1993-12-24

B
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For each city,

e Handling Missing Values:

O

Index).

“ nterpo

Apply t

mterpo

iVERS thetich day of year j. T is the number of available data for that year. (Narapusetty, et al.

ate missing values using linear interpolation method
he Climatological Mean of the Day (CMD) method for

ating climate data

Optimal estimation of the climatological mean)

station diur temp rng c
station avg temp c

station precip mm

station max temp c
station min temp c
reanalysis max air temp k
reanalysis tdtr k
reanalysis specific humidity g per kg
reanalysis sat precip amt mm
reanalysis relative humidity percent
reanalysis precip amt kg per m2
reanalysis min_air temp k
reanalysis dew point temp k
reanalysis air temp k
precipitation amt mm
reanalysis avg temp K

ndvi sw

ndvi se

ndvi nw

ndv1 ne

37
37
16
14

8

W W WW R bR R R R R B

week start date

ndvi ne

ndvi nw

ndvi se

ndvi sw

precipitation amt mm
reanalysis air temp K
reanalysis avg temp k
reanalysis dew point temp k
reanalysis max air temp kK
reanalysis min air temp K
reanalysis precip amt kg per m2
reanalysis relative humidity percent
reanalysis sat precip amt mm
reanalysis specific humidity g per kg
reanalysis tdtr k
station avg temp c
station diur temp rng c
station max temp c
station min temp c

station precip mm

Identify columns with missing values, especially for NDVI (Normalized Difference Vegetation

oo o oo oo o oo oo oo o oo

B




o Data standardization

o Adding lagg features

Dengue Outbreak Approximate Timeline

0 5 10 15 20
Days

Juliano SA, O'Meara GF, Morrill JR, Cutwa MM. Desiccation and thermal tolerance of eggs and the coexistence of
competing mosquitoes. Oecologia. 2002;130(3):458-469. d0i:10.1007/$004420100811

We've looked at past data and added new features by shifting our climatic information

by about 3 weeks
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Machine Learning .
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Model Selection: Shortlisting Relevant
Models

e PyCaret Python Library was used to do a quick run through
e Ran the function for both cities seprately (similar models were there in top 10)
e Shortlisted the best ro models for further analysis of performance
e Shortlisted Models

Model MAE MSE RMSE R? Model MAE MSE RMSE R2
et  ExiraTrees Regressor 25.8376 2284.5159 46.9393 (.1495 en  Elastic Net | 6.7681 129.8842 10.5429 -0.0253 r.HuberRegressor
en  Elastic Net 27.9897 2603.2451 49.8333 0.0586 Erlhﬂgﬂnul Matching 2108 1202654 10.5301 -0.0305 2. Lassolars
br  Bayesian Ridge 28.3362 2591.1884 49.7721 0.0574 ursuit Bl et
lasso  Lasso Regression  28.3876 2590.0591 49.8091 0.053¢ ~ Pr ~ BayesianRidge 6.7718 129.7549 10.5521 -0.0316 © 3- BIASHIE REL
Lasso Least Angle huber Huber Regressor 59912 138.8084 10.7858 -0.0326 4. Lasso RegT65510n
llar e 28.3847 2591.0750 49.8174 0.0533 | e . . : :
Regression asso  Lasso Regression 6.7821 130.6565 10.5735 -0.0328 S,Bay6513nR1dge
Orthogonal Matching P f f e :
OMP byt 28.1983 2589.3407 49.8845 0.0456 gy umy Dummy Regressor 70617 136.2876 10.8050 -0.0788 7'O_rthogomlMatChmg
Ir  Linear Regression  29.0921 2630.4215 50.1649 0.0407  ridge Ridge Regression 6.8976 132.1761 10.7505 -0.1074 LUTSUiC
huber Huber Regressor 24.3296 27922081 51.4973 -0.0005 Ir Linear Regression 6.8753 132.8426 10.7907 -0.1214 I.LmearRegreSSlon

dummy Dummy Regressor 292975 2809.7766 51.7658 -0.0142 et ExtraTrees Regressor  6.8037 1269249 10.7180 -0.2536 z.EXtraTreesRegressor

; 3.RandomForestRegressor
For San Juan For Iquitos



San Juan
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ExtraTreesRegressor: Builds an ensemble of decision trees during
training, but with additional randomness in the feature selection and
node splitting process, leading to potentially faster training and
improved generalization performance.

Mean Absolute Error (MAE): 21.22340425531915
Mean Squared Error (MSE): 1333.3829787234042

Root Mean Squared Error (RMSE): 36.51551695818374
R-squared (R2 Score): 0.4856616123131029

f RandomForestRegressor: Builds multiple decision trees during training

and outputs the average prediction of the individual trees for regression
tasks.

Highly effective in handling high-dimensional datasets and can capture
complex relationships between input features and the target variable

Mean Absolute Error (MAE): 21.5

Mean Squared Error (MSE): 1490.3085106382978

Root Mean Squared Error (RMSE): 38.604514122551755
R-squared (R2 Score): 0.4251292473737436

HuberRegressor: Combines the robustness of absolute error
minimization with the efﬁciency of squared error minimization. This
allows it to handle outliers in the data

Mean Absolute Error (MAE): 22.48936170212766
Mean Squared Error (MSE): 2502.7978723404253

Root Mean Squared Error (RMSE): 50.02797089969196
R-squared (R2 Score): 0.034572180006203435




HuberRagressor _ig

Iquitios

¢ = pctual

— pradicled

Waek Number
Lassolars_iq

— pradicled

0 2 40 & 80
Wik Mumber

BayesianRidge_iq

0 20 40 B0 B0

Weak Numbser

Mean Absolute Error (MAE): 5.259615384615385
Mean Squared Error (MSE): 80.0673076923077

Root Mean Squared Error (RMSE): 8.948033733301841
R-squared (R2 Score): 0.041355285282725696

Combines the penalties of both Lasso and Ridgeregression, allowing it to handle

multicollinearity and perform feature selection by encouraging sparsity in the

coefticients
Mean Absolute Error (MAE): 5.990384615384615
Mean Squared Error (MSE): 78.85576923076923
Root Mean Squared Error (RMSE): 8.880077095992423
R-squared (R2 Score): 0.085586101772590768

Adds a penalty term to the ordinary least squares method, encouraging sparse feature
selection by shrinking the coefticients of less important features towards zero,
effectively performing feature selection and regularization simultaneously

Mean Absolute Error (MAE): 5.990384615384615

Mean Squared Error (MSE): 79.875

Root Mean Squared Error (RMSE): 8.937281465859739
R-squared (R2 Score): 0.04365778249592911

Assumes a Gaussian prior distribution over the coefficients and computes the posterior

distribution using the observed data, providing a principled approach to regularization
and uncertainty estimation in regression tasks.

Mean Absolute Error (MAE): 26.585106382978722
Mean Squared Error (MSE): 2255.095744680851

Root Mean Squared Error (RMSE): 47.487848389675975
R-squared (R2 Score): 0.13012065707542197




Weighted Average of the Selected Models for the final Prediction

Iquitios dan Juan

R2Z Score

HuberRegressor

LassolLars

ElasticNet

Lasso

BayesianRidge

Ridge
OrthogonalMatchingPursuit
LinearRegression
ExtralreesRegressor

RandomForestRegressor

5.2596153846
5.9903846154
5.9903846154
6

6.125
6.3942307692
6.4038461538
6.5288461538
6.7116384615
6.7307692308

80.0673076923
79.875

78.85567692308
80.0192307692
80.375

86.7019230769
86.0769230769
87.4519230769
82.5384615385
84.9615384615

8.9480337333
8.9372814659
8.880077096
8.9453468781
8.9652105385
9.2676333149
9.2237152535
9.3515732942
9.0850680536
9.21/4583515

0.0413552853
0.0436577825
0.0558610177
0.0419309096
0.0376712897
-0.0261078831
-0.0186247671
-0.0470606077
0.0117681961
-0.0172432688

ExtraTreesRegressor
RandomForestRegressor
HuberRegressor

Lasso

Lassolars

BayesianRidge

ElasticNet
OrthogonalMatchingPursuit
Ridge

LinearRegression

21.5
22.4893617021
26.2925531915
26.2978723404
26.585106383
26.6117021277
£.2180851064
7.3670212766
27.5212765957

1333.3829787234
1490.3085106383
2502.7978723404
2237.1968085106
2237.244680851
2255.0957446809
2313.7925531915
2310.3457446809
2217.6436170213
2224.414893617

36.5155169582

38.6045141226
50.0279708997
47.2990148789
47.2995209368
47.4878483897
48.1018976049
48.066056055

47.0918635968
47.16370831372

0.4856616123
0.4251292474
0.03457218
0.1370249825
0.1370065162
0.1301206571
0.1074789837
01088085537
0.1445674194
0.141955471

final _predictions_ig = (

8.6 * prediction(iq std_train.drop('total cases',axis=1), Y _iq, ig_std test, 'HuberRegressor') + final_predictions_sj = |

9.3 * prediction(iq_std_train.drop('total_c: ' ,axis=1), Y iq, iq_std test, ' 0.6 * prediction(s)_std_train.drop
9.05 * prediction(ig_std_train.drop(‘'total_cases',axis=1), Y_iq, iq_std_test, 'Lassolars') + @.3 » prediction(sj_std_train.drop('total_cases’
9.85 * prediction(igq_std_train.drop('total_cases',axis=1l), Y_iq, iq_std_test, 'BayesianRidge')).astype(int) 0.1 * prediction(sj_std_train.drop('total_cases’

"total_cases’ axis=l), Y_5], 5]_5td_test, ExtralreesRegressor ) +

icNet ") +

Jaxis=1), Y_sj, sj_std_test, 'RandomForestRegressor’,sj_rf_params)

yaxis=1l), Y_sj, sj_std_test, 'HuberRegressor')).astype(int)

e 4 Models performed better than 3, based on e Top 3 models, shows a good trend in test split and backed by

test submission (MAE 25.5505 vs 25.3101) literature survey
o Extra Tree Regressor: 60%
o HuberRegression: 60% © LassoLars: 5%

o ElasticNet: 30%

o Random Forest Regressor: 3 0%

o BasyesianRidge: 5% o Huber Regressor: 10%



06

Results




Ranking in DrivenData DengAl

|

25.3101 #1335 2013

Make new submission

Total Participants: 14,990
Total Teams: 5994
Our Rank: 1335
Top 20% of Teams



Deployability at Plaksha

e Implement this on the Plaksha Campus, as a preventive mechanism for predicting and preparing for
vector-borne diseases like Dengue.

e [t can also be used by Plaksha Health Department to better prepare and acquire any logistics in case
of an outbreak in atleast 3 weeks in advance

e Given the current temperature range in Chandigarh (33 - 38 degrees Celsius), it's apparent that the
climate differs significantly from coastal regions where our model was originally trained. In the
dataset, we observed a strong correlation between temperatures ranging from 25 €O 30 degrees Celsius
and reported dengue cases. However, with the higher temperatures experienced in Chandigarh, chis
correlation may undergo changes



Challenges

As the deployment scales up to cover larger geographic areas or multiple regions, integrating
heterogeneous data sources from various sources becomes challenging. Standardizing data formats,
ensuring interoperability between different systems, and addressing data quality issues across diverse
datasets are some challenges

Handling large volumes of data and complex computational tasks associated with model training,
validation, and inference requires significant computational resources.

Models trained on data from specific regions may not generalize well to new geographic areas or
populations with different environmental conditions, demographics, and healthcare infrascructure.

Limited resources, including financial, human, and infrastructural resources, may constrain the
scalability of the dengue prediction solution, particularly in resource-constrained settings or low-
Income regions.
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